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Large coherent eddies have been observed in turbulent shear layers and seem to 
play an important role in their growth, mixing and noise production. Winant & 
Browand (1974) have observed that the pairing of large eddies is central to the 
question of shear-layer development, and they model the pairing process with 
discrete line vortices. It is shown here that the growth of the layer and amalgama- 
tion of large eddies are not adequately treated by isolated-line-vortex models, 
which are proved to be essentially non-evolutionary. A more detailed model of 
the shear layer, itself consisting of vortex elements, is shown to provide the 
definition required to observe the evolution and coalescence of the large eddies. 
The observed development of this model shear layer is consistent with many 
features of experimentally observed flows. 

1. Introduction 
In  recent years, visualization experiments on turbulent shear flows have 

revealed a large-scale structure which had not previously been apparent from 
statistical measurements. These large eddies now seem to play an important 
role in shear-layer growth, turbulent mixing and noise production; this paper 
describes some models through which certain aspects of their behaviour can be 
studied and quantified. 

Crow & Champagne (1971) suggested that turbulence in a round jet contained 
significant orderly structure. They observed that jet instability gave rise to a 
train of loosely packed vortex rings which tended to retain their identity as they 
travelled downstream. More recently, Lau & Fisher (1975) have confirmed that 
the dominant structure in the first few diameters of a round jet consists of an 
axial array of such vortices. 

In  an experimental study of ,a two-dimensional turbulent mixing layer between 
streams of two different gases, Brown & Roshko (1974) have observed a large- 
scale coherent eddy structure that is similar to that observed in the nonlinear 
stages of the transition of a laminar shear layer. Much experimental and theo- 
retical work has confirmed that the laminar shear layer can roll up into vortices 
(Michalke 1970). Freymuth (1966) was able to categorize the various stages of 
development of shear-layer transition at  high Reynolds number. Transition 
excited by sound began at the nozzle edge, downstream of which disturbances 
grew exponentially. A nonlinear region followed which was clearly visible with 
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smoke visualization. The vortices were seen to roll around one another and 
coalesce. Neither the linear nor nonlinear regions were much affected by viscosity. 

It is probable that. the large eddies are the debris of the initially unstable flow, 
and have developed to such a stage that they determine the mean flow structure. 

From the experiments of Brown & Roshko it is apparent that, in agreement 
with the similarity laws, the eddy spacing and scale increase linearly with down- 
stream distance. As individual eddies are observed to move downstream at 
an approximately constant velocity, the linear increase cannot be a continuous 
process. There must be some way in which eddies can lose their identity as they 
convect downstream. One possibility is the vortex coalescence observed by 
Freymuth. This was seen through smoke pictures and also from the appearance 
of subharmonics of the primary instability frequency. Subsequent downstream 
repetitions of this merging, occurring randomly in time and space, produce a 
statistically smooth, linearly growing mixing layer. 

Experiments on the mixing layer at moderate Reynolds number have been 
reported recently by Winant & Browand (1974). They mixed a highvelocity water 
flow with a slower stream, behind a splitter plate. The interface was visualized 
with dye. The formation of vorticity concentrations from growing, but initially 
weak waves was similar to that observed by Freymuth. But in the subsequent 
development, vortices interacted by rolling around one another and coalesced 
to form single larger vortices with approximately twice the former spacing. 
It is this interaction which is seen to control the spreading rate of the turbu- 
lent mixing layer. Similar coalescence which persists into the fully developed 
turbulent region was observed in round jets by Laufer (1974) and in planar 
jets by Rockwell & Niccolls (1972), who also felt that this was the controlling 
mechanism for growth. 

An identification of the large eddies as governing the flow development pro- 
vides a useful, almost deterministic picture of important elements in turbulence. 
Large fast eddies are the main cause of noise (Lighthill 1952), and the idea that 
they might be relatively deterministic, and therefore controllable, is extremely 
important. Indeed, Laufer proposes a quasi-ordered compact source model 
based on eddy coalescence. A deceleration observed (Laufer 1974) to precede 
pairing in a round jet indicates that the outer ring expands and slows whilst the 
inner ring contracts and accelerates to catch it up. This is a relatively sudden 
large-scale event, which must cause efficient sound production. This process 
would occur in the early stages of jet development and it is there that the most 
intense jet-noise production is known to occur (Kinns 1975). 

The large eddies also provide a clearer understanding of the process of entrain- 
ment. The pictures and measurements of density fluctuations made by Brown & 
Roshko suggest that turbulent mixing and entrainment is a process of entangle- 
ment on the scale of the large structures. The eddies engulf fluid in their formation 
but during their lifetime are subject to internal mixing only while the eddy is 
transporting fluid from both sides of the mixing layer. 

Since large eddies have such an importance it is of considerable interest to 
attempt to model the amalgamation process, and to consider whether coales- 
cence is an essential or likely interaction between two vortices. 
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Initial steps in modelling this were taken by computing the paths of two line- 
vortex pairs. It became clear from the numerical computations that the mot,ion 
for vortices of the same sign was nearly always periodic. Love’s (1894) classical 
analysis of this problem (with vortices of equal strength) is extended in $ 2  to 
include unequal strengths. There it is shown that there exists a condition for 
cyclic motion which relates the ratio of the breadths of the two vortex pairs a t  
the time when bhey pass one another. The paths taken by the vortices are deter- 
minable from their initial positions. Typical paths for the cyclic motion are 
shown in figures 4 and 5 .  The motion of two vortices of opposite sign is not 
periodic and eventually the vortex pairs move away from each other. A third 
vortex pair can, however, act to make two other vortex pairs not initially set in 
periodic motion move into cyclic motion. 

A model proposed by Winant & Browand consists of two equi-spaced infinite 
arrays of line vortices, members of which can never become locked in cyclic 
motion (figure 18). Thus, notwithstanding our observation of ‘catalytic pairing’ 
and Winant & Browand’s suggestion to the contrary, the main conclusion to be 
drawn from this part of the paper is that the motion of simple configurations of 
isolated line vortices is essentially non-evolutionary and cannot adequately 
model the interactions which occur in the shear layer. 

A model which can represent more details of the vortices involved in these 
interactions is clearly required. Such a model is described in $3’ where discrete 
line vortices are used to represent a shear layer. The growth of this shear layer is 
computed and finit’e-area concentrations of vorticity evolve. These eddies are 
then seen to interact by rolling around one another and coalescing. The develop- 
ment of these vortices and their subsequent amalgamatdon are shown in figure 10. 
A systematic variation of the parameters used to define the initial shear layer 
shows that, although the formation of the first eddies is dependent on the initial 
conditions, the occurrence and abruptness of the amalgamation process depend 
only on the irregularity in lateral spacing of the structures. It is seen from this 
computation that the amalgamation of eddies by rotation and pairing can be 
inviscidly modelled to provide a growth mechanism of the shear layer. It is also 
possible to model in this way the growth mechanism proposed by Moore & 
Saffman (1975), where eddy destruction takes place when two strong vortices 
are a,ble to tear apart a weak neighbour. But we observed in our computations 
that the amalgamation by rotation and pairing is more likely to occur, presum- 
ably because it depends on ever present irregularities in lateral spacing. The 
abruptness of this modelled process is clearly visible in our results; such a rapid 
change with a large length scale is inevitably it less compact motion than the 
bulk of turbulence and this makes it a much more effective noise source. It is also 
clear from the figures that this technologically important motion is both rela- 
tively deterministic and clearly identifiable with commonly visualized aspects 
of shear flow. 
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2. The kinematics of discrete vortex pairs 
The simplest formulation of the vortex interaction problem is the relat'ive 

motion of two line-vortex pairs. This is considered here to discover whether two 
such pairs have an essentially independent existence or whether they interact 
and evolve into a 'paired' situation where the four vortices are locked in cyclic 
motion. 

The stream function 4 due to a line vortex of strength K~ a t  the position 

@(X,Y) = (-~o/4n)loge [ ( x - ~ o ) ' +  ( Y - Y O ) ~ I .  
(XO' Yo) is 

The stream function for the vortex configuration illustrated in figure 1 is ob- 
tained by superposition: 

where, of course, xo and yo are now time dependent. 

leads to 

This can be written as 

For a system of vortex pairs the theory of the impulse (Lamb 1924, art. 157) 

XKY = constant. 

3 = ( K l Y l +  KOYOf/(Kl+ KO), (1) 

where 5 = c = constant. The energy of the motion (Lamb, art. 157) is given by 

T = --+p&$ = constant. 

From this, the generalization of Love's (1894) equation (6) readily follows: 

The components of the vortex convection velocity are obtained from the stream 
function: 

Consider the vortices to be rotating about the 'centre' (Z, D) of the system of 
vortices (Lamb, art. 154) as shown in figure 2 .  Then 

?j = c = constant 

2 = 

from (I), 

+ K ~ x ~ ) / ( K ~  + K ~ )  =k constant. 
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FIGURE I .  Initial positions of vortex-line pairs. 

FIGURE 2. Relative positions of vortex half-pairs. 

Using the notation of the figure 

y1 = rlsin8+c, yo = c-r,sinB. 

Equation (2) can be written as 

(4) 

( (rl + cos2 8 + [2c + (rl - 
(r1+ TOY 

(c + r1 sin (c - rosin 1 9 ) ~ o l ~ i  = k2. 

Equation (1)  requires that Klrl = Koro.  Therefore the polar equation of motion 
for the vortex at  (r,,  8)  is 

(c + p-lro sin I9)B (c - ro sin 8)llp {r;(p-1+ I)2 cos2 19 -t- [2c + ro(/3-1 - I )  sin O]2}  

= r;(p-l+ 1)2k2,  ( 5 )  

where = p (p > 0). The vortex pairs must always pass one another at some 
time, i.e. there is always a, solution of this equation for 0 = &i-. However, for the 
paths of the vortex pairs to be closed curves, the equation must aIso have a 
solution for 8 = 0 for which the angular velocity of the motion is non-zero. 

From (5) when 8 = 0 

c8+1/P[r~(,!?-l+ 1)2 + 4c2] = r;(/3-1+ 1)s La, 
4c2+8+118 

r; = (p-l+ 1)2  (k2 - CB+l/B)' 

This equation has real roots for 
k2 > CB+l/B. 
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When k2 = cP+l/p, ro+co. From (4) when O = 0 

dyo/dt = -r,dO/dt. 

Equations (3) can be written as 

Therefore, in this position (0 = 0), dB/dt is non-zero unless r,, -+ co. 
The path of the vortex at (rl, 8 )  is given by 

(c +r,sin 8 ) p  (c -PrlsinO)l/p{r;( I +p)2cos20 + [Zc + rl( 1 -/3)sinO]2} = r;( i + P ) Z k z .  
( 7 )  

Similar analysis to that given for the vortex a t  (ro, 0) again leads to equation (6) 
for the condition for periodic motion. 

From (5) and (7), it can be seen that the closed curve will be symmetric about 
0 = +n. The condition that the paths are closed curves is the condition that the 
motion is periodic, and it can be seen that the paths followed by the vortices 
are determined once their initial configuration is decided. 

The vortices are moving about the point on the line joining them at y = Cj = c, 
which is moving with a velocity dx/d t  given by 

dZ d x  d x  
( K 1 + K o ) ~  = Ko-o+K 

at a t .  

The period of the cycle is identical for the two vortices, the stronger moving 
on a shorter path inside that of the weaker. It can now be seen that the motion 
of each vortex pair is generally a cyclic motion similar to the threading motion of 
Helmholtz rings (Batchelor 1970). 

When the vortices have the same strength, they move on identical paths 
about the midpoint of the line joining them. The equation of the path is 

X 2 y 2 + ( k 2 + C 2 ) y 2 + ( k 2 - C 2 ) X 2 - C 4  = 0 

and (1)  becomes y = c = l  2(Yl+YO). 

The condition for periodic motion is 

Ic2 > c2. (9) 

When the condition (6) is not fulfilled, then the motion is neither cyclic nor 
repeated. However, since there must always be a configuration (past or future) 
when the vortices pass one another, condition (6) can be interpreted in terms of 
a critical ratio of the breadths of the vortex pairs. 

Thus, writing y1 = r, and yo = Yo when x1 = xo, equations ( I )  and (2) become 

(Y,+PY,)I(1+P) = c (10a)l 

and 



Large eddies in a two-dimensional shear layer 567 

Consider for the moment /3 = 1; then (9) requires 

i.e. Yl/Yo < 5.8282 for periodic motion. 
This is the condition obtained by Love, who considered this motion of vortices 

of equal strength. As he showed, the motion is periodic if, at the instant when 
one pair passes through the other, the ratio of the breadths is as given in ( 1 1 ) .  
However, when Yl/Yo = 3 + 2J2, then the smaller pair shoots ahead, and the 
larger pair does not catch it but contracts until both have the same breadth at  
Y, = Yo = c and are an infinite distance apart. (Obviously, if the initial configura- 
tion is ,8 = 1, gl = yo, then no vertical motion ever occurs.) When K/& > 3 + 2 4 2 ,  
the smaller pair moves ahead and widens to a constant breadth while the wider 
pair contracts, neither reaching the position y = c .  Again they are ultimately an 
infinite distance apart. 

Such a condition also exists when the vortices have different strengths. 
Equations (6) and (10) give 

It should be noted that (10) are unchanged if p is replaced by 1/p and Yl/& 
replaced by Yo/Yl; hence in evaluating (12) only values of Yl/& 2 1 need be 

Hence, from (12), the condition for a closed curve is f(P) < 0. Let Y,/& = 1 + e, 
where e 2 0. Then 

It can be shown from (13) that for all p 
00 as e+O, f(~'+(i as e-tco.  

Thus a critical value of Yl/Yo as discussed for P = 1 exists for all p. As /3 is increased, 
this critical ratio is increased. However, as /3 is decreased (p < l), there is a 
limiting value of Yl/Yo below which the vortices are always locked in cyclic motion. 

For p 4 1, equation (13) becomes 

f(P) = e" - (1 + e)b (1 + 2/e)2, 

f(P) -+ f (O> = ee - (1 + 2 1 ~ : ) ~ .  and as p-+ 0, 
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FIGURE 3. Curves showing some critical values of Y,/Yo for cyclic motion ( f ( P )  < 0) or  
non-cyclic motion ( j ( P )  > 0). 

This is the limiting curve and f (  0 )  changes sign when 

E = 210ge(l+2/€). 

This gives lim (YJY,) = 2.61293 (to 5 decimal places). (15) 

For any value of Yl/Yo less than this, the vortex pairs are locked in cyclic motion 
whatever their relative strengths. 

Figure 3 shows f(P) plotted against &/Yo for several values of p. f ( P )  < 0 
indicates the configurations for which periodic motion occurs. The critical value 
of YJY, for values of p > 2 is not shown; it becomes very large, e.g. when 
p = 4, Y,/Y, < 45 gives periodic motion. It can also be seen that for p + 1 the 
situation arises where, for a particular value of YJY,, the vortices are locked in 
cyclic motion if the weaker pair are the closer pair (p > l ) ,  whilst they are not 
in cyclic motion if the stronger pair are closer together (,8 < 1). 

The paths of the vortices were also computed. The starting configuration as  
shown in figure 1 was specified and also the relative strengths of the vortices. 
The induced velocity of one vortex due to the other three was calculated for each 
vortex in turn. From (3) 

and 
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FIGURE 4. Typical cyclic paths of two identical vortex half-pairs (,8 = 0). 0 ,  f, equal 
time intervals; *, initial positions. 

r 

Paths relative to 
centre of motion 

L- 

FIGURE 5. Typical cyclic paths of two vortex half-pairs with ,8 = 6. Symbols aa in figure 4. 

New positions were then computed for each vortex: 

X( 3’+1 = xij + ~ ( 3 ’  At, (17) 

where xi, = (xii, yij) is thejth position of ith vortex, uij = (ui3’, vii) is the corres- 
ponding velocity and K( is the strength of ith vortex. The small time step At was 
based on checks during the running of the program on the magnitude of the 
acceleration and also on the angle turned through by the velocity vector. 

Some examples of the motion of the vortex half-pairs are given in figures 4 
and 5.  As shown previously, the paths followed by the vortices are determined 
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solely by their initial positions. The typical threading motion with /3 = 1 is 
shown in figure 4. The same path relative to the midpoint of the line joining the 
vortices is shown. Markers showing equal intervals of time indicate the relative 
time spent in each part of the motion. It can be seen that, during the slowest 
part of the cycle, the vortices loop backwards in their paths. 

If the vortices are initially set, much closer together, this backwards looping 
becomes more marked, the net movement in the x direction being small. When the 
vortices are set further apart, the path shapes a.re considerably elongated in the 
x direction. 

In  the situation shown in figure 4, ?;/Yo = 2.4 (when the vortices are vertically 
in line), which may be compared with equation (1 1) .  It can be shown that, for 
these vortices not to be 'locked' in cyclic motion, the initial separation in the x 
direction must be increased by a factor of 44. 

The form of motion when the vortices have different strengths is shown in 
figure 5. The paths of the vortex half-pairs are now not the same, but as before, 
a larger initial separation elongates the paths in the x direction. 

The motion of these vortices is again completely determined by the initial 
configuration. In  order to consider further the motion of these discrete vortex 
pairs, the motion of two vortices moving initially in opposite directions was also 
investigated. This corresponds to negative values of /I. 

In  the particular case p = - 1, (1) and ( 2 )  become 

y1 - go = constant, (18) 

When y1 = yo initially, this relationship is maintained during all subsequent 
motion : 

Y1 = Yo = Y, dY,ldt = dYO/dt. 

From ( 3 )  dxl/dt = -dxo/dt. 

Hence x1 = - xo = x in all subsequent motion and from (1 9) 

y-2 + x-2 = k2. (20) 

This is the well-known equation (Lamb, art. 155) for the paths of the vortices, 
where as they approach closely they move away from the boundary and y-+cx3. 

When y1 .t; yo, (1) continues to hold and the paths are of similar form to (20). 
Typical paths are shown in figure 6. 

When the vortices are of opposite sign and different strengths, they do not 
remain together but after some deviation from their original paths pass one 
another and continue moving in opposite directions. The exact form of the paths 
followed depends only on the relative strength of the vortices and the value of 
the constant in (1). Some typical paths are shown in figure 7. 

This type of interaction between vortices of opposite sign thus never involves 
any pairing or periodic behaviour of the vortices. The paths are again determin- 
able once initial conditions are specified. 
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FIGURE 6. Typical paths of two identical vortex half-pairs of opposite sign (/3= - 1). 

The motion of three vortex half-pairs was also considered. Similar relationships 
to  (1)  and (2) hold. Thus, for three vortices of the same sign, the motion is again 
periodic and determinable from the initial conditions. If  just two of the vortices 
have the same sign, then condition (6) is applicable to them and the approach of 
the third vortex produces a combination of the previously described paths. 
Typical examples are shown in figures 8 ( a )  and (b) .  When the two vortices of 
the same sign are not initially set in cyclic motion according to condition (6), 
then the approach of the third vortex can affect the motion such that cyclic 
motion results. This is shown in figure S ( c ) .  This is the only case in this simple 
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X 

FIGURE 7. Typical paths of two vortex half-pairs of opposite sign. (a)  p = - 1.4. 
( b )  /? = - 3. (c) /l = - 6. Symbols as in figure 4. 

modelling with discrete vortex pairs in which periodic motion evolves from a 
non-cyclic situation. A third vortex of opposite sign can thus act as a 'catalyst' 
to give cyclic motion. However, this is not obviously applicable to the coales- 
cence of vortices observed in shear layers since those vortices essentially have 
the same sign. 
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FIGURE 8. The paths of three vortex half-pairs showing the motion of two half-pairs in 
the presence of a third vortex of opposite sign. (a)  -0-, -+-, K = 1; -a-, 
K =  - 2 .  ( b )  -----, --- , K = 1 ; - .-, K = - 1. (c) An example of 'catalytic pairing' : 
-A-, --+-, K = - 1; -0-, K = 1. 
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It thus appears to us, despite Winant & Browand's apparently convincing 
statements to the contrary, that elementary isolated line vortices cannot ade- 
quately represent the vortex pairing action observed in shear layers. The cyclic 
motion described here is essentially lion-evolutionary; there is no tendency for 
vortices to coalesce. Such coalescence depends on finer details in the shear layer. 
A modelling of that detailed structure is attempted in the next section, where 
the shear layer is represented by a continuous array of elementary line vortices. 

3. The discrete-vortex modelling of a two-dimensional shear layer 
The vortex sheet 

A simple extension of the previous model to form a vortex sheet of finite length 
has immediate difficulties: the ends of the sheet roll up. This gradually distorts 
the whole layer and the number of elements required to give a short undisturbed 
region in the middle becomes uneconomically high. 

This problem was overcome here by repetition of elements in a cyclic array to 
form an infinite shear layer. The number of vortices and their initial distribution 
within a cycle can be specified and the induced velocities due to the whole sheet 
calculated. The complex potential u, of an infinite row of equidistant vortices of 
equal strength K and spacing a is 

i K  nz 
W ( Z )  = -log, sin - a 

2n 

(Lamb 1924, art. 156), giving 

- K sinh 2~ryla 
u(x' ' )  = 2a (cosh 2nyla - cos 2nx/a)' 

K sin 2nyla 
2a (cosh 2nyla - cos 2nzla)' v(x, y )  = 

We write these velocities in the notation of (16) and calculate the induced veloci- 
ties of all n vortices in the 'cycle' length a:  

n 

(22) 
/ck sin 2na-l(xii - xk j )  

vii = CI 
k=l  2a [cosh 2na-l(yij - y k j )  - cos 2na-l(xij - xki)]' 
k+i 

These are evaluated and substituted in (17) to calculate the motion. A non- 
dimensional time parameter T may be defined here. The n vortices distributed 
along a wavelength h cause a net velocity discontinuity AU across the sheet 
which is given by 

AUh = n K .  (23) 

Define 
(24) 
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F I U ~ E  9. The development of a vortex sheet represented by discrete vortex elements. 
(a) T = 0. (b)  T = 0.30. (c) T = 0.35. (d) T = 0.38. (e) T = 0-53. (f) T = 0.69. (9)  T = 0.92. 



576 E .  Actolz 

This representation of a vortex sheet was first considered by Rosenliead (l932), 
who specified the repetition of a single wavelength of four, eight or twelve vortices 
distributed evenly along a sine wave. Rosenhead took very large time steps in 
his ‘hand’ calculations and observed that the surface tended at first to roll over 
itself like a breaking wave and then proceeded smoothly to roll up to a concen- 
tration of vorticity. 

The object here is to specify several wavelengths and to observe any inter- 
action between the rolled-up structures. A sinusoidal distribution of 8 vortices 
per wavelength and their subsequent motion are shown in figure 9. The rolling 
up of the sheet proceeds smoothly. The overall time for roll-up and the shape 
are in agreement with those found by Rosenhead although the time step taken 
here is very much smaller (AT = 0.001). When non-uniformities were introduced 
into the defined cycle, the layer rolled up in a non-uniform way. However, this 
had no observable effect on the larger-scale motion which is our particular concern 
here. 

Obviously there is too little definition in the sheet shown in figure 9, so the 
number of vortices in the representation was increased. With 24 vortices the 
situation was quite chaotic, essentially because of the critical closeness of vortex 
elements, which allows the motion to be dominated by the more unstable smaller 
scales. However, the overall time taken to roll up was unaffected by this. This 
behaviour has been observed by several authors: Hama & Burke (1960) also 
repeated Rosenhead’s calculations (with AT = 0.025) and suggested that, by 
taking large time steps, Rosenhead had eliminated the effect of the small-scale 
motion. Later, Moore (197 1) conclusively showed that the contorted roll-up was 
not due to inaccuracies in the computation and that increasing the number of 
vortices worsens the situation. A finer digitization represents the pathologically 
unstable vortex sheet more accurately. The basic model is a t  fault. 

Chorin & Bernard (1972) felt that it is the high induced velocities which occur 
when two vortices come close together that invalidates the model. They suggested 
the introduction of a finite-radius core to the vortices. The equation for the 
stream function of a single vortex then becomes 

(~/277) log,r for r IT, 

for r < IT, ’ = (&KY/IT 

where IT is a small cut-off radius. Chorin 85 Bernard suggested that this cut-off 
is analogous to the introduction of a small viscosity which allows the vorticity in 
a line vortex to diffuse. The effect is not cumulative; the vorticity is spread a 
little way only. They were able to show that for IT 4 0 the roll-up proceeded 
smoothly, and the results were independent of a €or a small. 

In  order to give the shear layer increased definition and also to  reduce the 
irrelevant small-scale rippling, the layer was given a finite thickness. Several 
rows of vortices (12 per wavelength row) were specified, each identical, but with 
a small separation between the rows. A cut-off was applied to the velocity induced 
by each vortex element. The radius CT for the cut-off was chosen as the smallest 
that had the necessary, in fact any, effect. It was then found that a smooth 
rolling-up of the layer could be achieved. 
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FIGURES 10 (a-c). For legend see page 580. 
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FIGURES 10 (g, h).  For legend see page 580. 

The shear layer of f inite thickness 

The typical st,arting configuration is shown in figure lO(a), for T = 0. The 
specified length for repetition contains 96 vortices arranged evenly in four rows 
along two sinusoidal wavelengths. The layer has a finite thickness A, and the 
second wavelength is offset vertically by a length 6. The two sections have the 
same wavelength A and amplitude A .  

The subsequent development of the layer is shown in figures lo@)-(j). The 
values of the non-dimensional parameters are given in table 1, case 1. It can be 
seen that the sheet rolls up to form concentrations which rotate about their own 
axes and then about one another until they coalesce. A single structure is then 
formed which continues to rotate about its own axis. Interaction between these 
large structures is prevented in our model by the cyclic repetition condition. 

37-2 
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FIGURE 10. The development of EL thick shear layer represented by discrete vortex 
elements (circles and crosses). (a) T = 0. (b)  T = 0.264. (c) T = 0.377. (d) T = 0.603. 
(e) T = 0.666. (f) T = 1.043. (9)  T = 1.696. (h) T = 2.111. (i) T = 2.488. ( j )  T = 2.840. 

During the initial stages of the rolling-up (up to T = 1.0), the structure of the 
rolled-up sheet seems well defined. However, once the 'eddy' is well formed and 
begins to rotate, i t  loses this structure and remains a smeared-out concentration 
of vorticity. In  order to discover the degree of definition in the initial structure, 
a vertical row of flow markers was incorporated. Two situations were considered. 
First, the markers were active vortices with equal strengths such that the overall 
strength of the wavelength was unaltered. In  the second case, the markers were 
passive elements moving under the influence of the surrounding vortices only. 
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1 

Variation of A 2 
3 
4 
5 

Variation of A 6 
7 
8 
9 

10 

Variation of S 11 
12 
13 
14 
15 
16 

0.0938 

0.15 
0.25 
0.4 
0.06 
0,09375 
0.09375 
0.09375 
0.09375 
0.06 

0.09375 
0.09375 
0.09375 
0.09375 
0.09375 
0.09375 

0.1 

0.1 
0.1 
0. I 
0.1 

0.05 
0.025 
0.025 
0.025 
0.01 

0-1 
0.1 
0.1 
0.1 
0.1 
0.1 

0.0375 

0.0375 
0.0375 
0.0 
0.0 

0.0375 
0.0 
0.01 
0.0375 
0.0 
0.0025 
0.01 
0.01875 
0.0755 
0.11 
0-25 

TABLE 1. The variation of the parameters of the model of a thick 
shear layer 

These are shown in figures 11 and 12. The active markers (figure 11) show smooth 
initial development but stretch out to form a single row of vortices: a vortex sheet 
which then exhibits instability. The passive markers (figure 12) simply rotate 
around their closest active neighbour. It can thus be seen, as expected, that our 
discrete model cannot represent fine-scale shear-layer structure; that fine-scale 
structure should therefore be ignored. 

In  this and subsequent cases the time step was larger (AT = 0.0125) than 
that used for the development of the computer program. This was desirable in 
order to reduce the computation time, and was found to have no significant 
effect. As previously discussed, it is necessary for each vortex to have a finite- 
radius core to reduce the high velocities of small-scale instabilities that would be 
induced on neighbouring vortex elements. The model core used here is that given 
by ( 2 5 ) ;  the large-scale behaviour was not affected by the choice of core. 

The thickness H of both the single structures and the overall layer can be 
estimated for the development shown in figure 10. There is an initial rapid growth 
as the layer rolls up, which then decreases as the vortex rotates about its own 
axis and is eIongated in the direction of mean strain. The form of this growth is 
matched by that of the layer as a whole. However, as the vortices begin to move 
closer there is further rapid growth as coalescence takes place and the two vortices 
lose their separate identities. This growth is shown in figure 13. It can be seen 
that, as the larger eddy begins to rotate about its own axis, the width again 
decreases a little. 

The growth of the width of the layer obviously depends on the initial configura- 
tion of the larger. This dependence was investigated by varying the parameters 
involved over the range indicated in table 1. The initial layer thickness was 
varied by increasing the separation between the rows of vortices or by increasing 
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FIGURE 13. Typical growth of the width of a single structure and the overall shear layer. 

A / h  = 0.1, A/h  = 0.09375, 6/h = 0.0375. 

0 1 .o 2.0 3.0 4.0 

FIGURE 14. The effect of shear-layer thickness on the growth of the overall width of the 

AiA = 0.25. 

1' 

layer. A/A = 0.1, 6/h = 0.0375. --- , A/A = 0'09375; --- , A/h = 0.15; ---, 

the number of rows. As the thickness A is increased, there is a slower rate of 
rotation in the rolling-up of the layer. The increase in the width H is correspond- 
ingly slower as shown in figure 15. In  the extreme case when AlA = 0.4, there is 
no growth at all. The structures formed with increased A are longer and coales- 
cence is therefore able to occur quicker as shown in figure 14. Case 3, where 
A/A = 0.25, is seen to represent a limiting case in the form of the coalescence. 
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A/h = 0.09375; - * - * -  , A/h = 0.05, A/h  = 0 09375; 

The final value of the width H is smaller than with an initially smaller thickness A. 
This appears to be due to the large streamwise length of the two vortex concen- 
trations, which causes them to be too close together to rotate about one another. 
They coalesce under the shearing action of the layer. In case 4, where there was 
no initial growth, no recognizable vortex structure forms and the layer remains 
a single thick layer which could periodically thicken. 
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FIGURE 17.  The effect of initial lateral spacing on the growth of the overall width of the 
la.yer. A / h  = O. i , ,  A/h = 0-09375. - -, S/h = 0-0025; - a  -, 6/h = 0.1 ; - - -, S/h = 
0.0375; - - -, 6/h = 0.0755; -+-, S/h = 0.11; - *  -. - , 6/h = 0.26. 

When the amplitude of the initial wave form is decreased, the rate of rotation 
during t'he rolling-up of the layer is slower. The single structures are then well 
separated and do not form such elliptical shapes. The growth of the width of the 
single st'ructures is shown in figure 16. It can be seen that the curves form a 
'family' which reach their maxima later with decreasing initial amplitude. 

For the values of 6/h given in table 1,  the initial rolling-up of the shear layer 
occurs as shown in figure 10, and the form does not change significantly with 
changes in this lateral irregularity 6. However, as 6 is increased the coalescence 
occurs sooner. This is shown in figure 17, where the overall layer width follows 
that of the single structures for a shorter time. 

In  summary, the effects of the initial conditions are as follows. 
(if The initial shear-layer thickness governs the initial roll-up rate of the layer. 

(ii) The time taken to reach the maximum rolled-up width is the same for all 

(iii) The effect of decreasing the amplitude is to delay the rolling-up. 
(iv) The time taken for coalescence is determined solely by the lateral irre- 

(v) The process is always relatively abrupt, it  simply takes longer to begin 

It can also serve to inhibit the pairing process. 

initial layer thicknesses (for the same initial amplitude). 

gularity 6. 

for smaller 6. 
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4. Discussion 
The initial stages in the eddy development are essentially those common to 

aspects of nonlinear transition of laminar flows. Michalke (1963) has shown, 
using linear stability theory for a shear layer with a linear velocity profile, that 
maximum amplification of the disturbance occurs when the thickness ratio 
A/h N 0.126. The corresponding exponential growth rate is 0.2. A sinusoidal 
form of the shear layer occurs when the amplitude ratio A/h reaches about 0-02. 
These values are within the ranges considered here. The initial exponential 
growth rate of case 2 ,  (table I )  with A/h = 0-15, is in agreement with these 
calculations, although the development is soon nonlinear because of the high 
amplitude ratio. The modelled shear layer is given a disturbance of finite ampli- 
tude, which is thus assumed feasible at  the onset of nonlinearity. This is not 
directly relevant to the pairing process. It is, however, one way in which the 
eddies which form the large-scale structure could evolve. It is probably more 
realistic than an infinite array of single point vortices at the centres of vorticity 
of the coalescing structures, The paths followed by the vortices for that 
configuration are shown in figure 18. These paths are those of Winant & 
Browand’s model and are continuously repeated. It can be seen that the two 
vortices are not locked together in cyclic motion, and cannot represent the 
pairing process. 

In the model presented here, the structures in the specified length are repeated 
in a cyclic array to infinity, However, in the real turbulent flow, all parts of the 
layer would be at  different stages of evolution, and it might be supposed that this 
would significantly affect the eddy development. Therefore a longer specified 
length of five wavelengths was considered. Two wavelengths were described as 
in figure 10 and the outer wavelengths consisted of smaller, differing amplitudes. 
It was found that the coalescence was substantially independent of the form of 
the surrounding wavelengths and it is thus probable that the interactions des- 
cribed here actually occur in a real growing shear layer. 

Our model was extended to represent both the symmetric and antisymmetric 
development of a planar jet by specifying two parallel shear layers. The sinuous 
form of the jet observed by Rockwell & Niccolls (1972) can thus be modelled. 
(An example of this is given in figure 19.) They also observed a t  low Reynolds 
number a ‘nascent coalescence ’ where embryonic vortices formed early in the 
jet development and seemed to stagnate before sliding into one another with 
little net rotation. This can be observed in our model when there is initially a 
low amplitude but high lateral irregularity, so that coalescence takes place before 
the vortices develop fully. 

In their experiments on high Reynolds number turbulent flows, Brown & 
Roshko estimated the visual spreading rate of the mixing layer in homogeneous 
flow. This was equivalent to 

d(H/h) /dT = 0-38. 

This line is shown in figure 13 (case 1)  and is seen to be approximately the growth 
rate during the modelled pairing process. This could indicate that a continual 
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FIGURE 18. Typical paths of the members of two equi-spaced infinite rows of vortices. 

0,  + , equal time intervals ; *, initial positions. 

repeated coalescence of eddies could account for the spreading rate of the tur- 
bulent mixing layer. 

The model presented here is basically inviscid and requires no turbulent 
diffusion mechanism. This is in agreement with the ideas presented by Brown & 
Roshko, and also by Winant & Browand, where it is the amalgamation process 
which entrains the fluid by trapping irrotational fluid between the coalescing 
structures. The smaller instabilities embedded in the larger structures do not add 
to the basic ingestion of fluid. Recently, Moore & Saffman (1975) have suggested 
an alternative process for the growth of the large eddy structure in the mixing 
layer. They consider that the large eddy is growing continuously by turbulent 
entrainment and the structures reach such a size that any weak vortex gets torn 
apart by the action of its neighbours, thus satisfying the requirement for the 
number of eddies to decrease. 

Moore & Saffman have two objections to the process of vortex amalgamation 
described by Winant & Browand. One is that Brown & Roshko did not observe 
the process. But, although it is not discernible from their shadowgraphs, they 
suggest in their recent (1974) paper that amalgamation events can be seen by 
plotting eddy trajectories on an x, t diagram. The second objection is that the 
inviscid assumption gives a vorticity relation which is inconsistent with the 
similarity laws. However, this was based on calculations assuming vortices of 
constant cross-sectional shape. But such a regular geometry is not observed here 
nor was it seen by Winant & Browand. 
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FIGURE 19. The sinuous form of a developing asymmetric jet. T = 0.666. 

The similarity law requires that the vorticity should decrease linearly with 
downstream distance. From the form of the vortical structures during the amal- 
gamation shown in figure 10, it is possible tentatively to estimate the changes in 
mean vorticity. This is shown in figure 20 for four points during the pairing. 
The vorticity does show a linear relationship with T (equivalent to x) and so this 
inviscid process does not seem to be inconsistent with the similarity law. This 
decrease in vorticity would occur because of the entrainment of irrotational fluid 
as discussed above. 
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FIGURE 20. The estimated variation of mean vorticity with time. 

However, the destruction of a weak eddy by the gradual removal of its vor- 
ticity by its neighbours can be demonstrated using the model presented here. 
The essential requirement is that the stronger eddy should also be larger. This 
can be achieved by specifying a length of shear layer which includes both a 
short wavelength and a long wavelength. These roll up at differing rates to 
form unequal structures. It is found that the larger vortex continuously rotates 
about its own axis and, whilst elongated in the flow direction, as described 
previously, is able gradually to ingest the vorticity of the weaker. The ‘centre’ 
of vorticity of the large structure remains unchanged. However, this does take 
a long time (T = 3.2 based on the longer wavelength) and also requires a very 
regular array (6 = 0 ) ;  otherwise coalescence by rotation and pairing occurs first. 

5. Conclusions 
A model of the development of large eddies in a shear layer is shown to require 

some representation of the distribution of the vorticity. The motion of two dis- 
crete line-vortex pairs is either cyclic or non-cyclic depending solely on the 
initial conditions. The motion of typical members of two equi-spaced infinite 
rows of vortices is never cyclic. There is no tendency for such vortices to coalesce. 
The shear layer itself must be modelled if eddy evolution is to be visualized 
effectively. 

The observed development of our model shear layer is consistent with many 
features previously described. Apart from the situation where there is a very 
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large initial layer thickness, it  is seen that after coalescence the structures 
formed are approximately independent of the initial conditions. The amalgama- 
tion process is seen to be relatively abrupt and so would be likely to be a most 
effective noise source; but controlling the process by means of the initial condi- 
tions does not seem feasible. 

It is seen that the pairing process is a likely mechanism for the growth of a 
turbulent mixing layer. The irregularities caused in the layer by any coalescence 
would be sufficient to provoke further pairings, thus ensuring continual amal- 
gamation events to produce the smooth linearly growing mixing layer. The 
growth mechanism proposed by Moore & Saffman could also occur if the condi- 
tions were such that the irregularities in strength were more prominent than 
those in lateral spacing. It seems possible that both mechanisms could be 
occurring at  different points in the layer, but we think vortex pairing to be a 
more probable mechanism of growth. 
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